A primal-dual regularized interior-point method for convex quadratic programs
نویسندگان
چکیده
Interior-point methods in augmented form for linear and convex quadratic programming require the solution of a sequence of symmetric indefinite linear systems which are used to derive search directions. Safeguards are typically required in order to handle free variables or rank-deficient Jacobians. We propose a consistent framework and accompanying theoretical justification for regularizing these linear systems. Our approach can be interpreted as a simultaneous proximal-point regularization of the primal and dual problems. The regularization is termed exact to emphasize that, although the problems are regularized, the algorithm recovers a solution of the original problem, for appropriate values of the regularization parameters.
منابع مشابه
An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملRegularized Symmetric Inde nite Systems in Interior Point Methods for Linear and Quadratic Optimization
This paper presents linear algebra techniques used in the implementation of an interior point method for solving linear programs and convex quadratic programs with linear constraints. New regularization techniques for Newton systems applicable to both symmetric positive de nite and symmetric inde nite systems are described. They transform the latter to quaside nite systems known to be strongly ...
متن کاملA Primal-dual Interior Point Algorithm for Convex Quadratic Programs
In this paper, we propose a feasible primal-dual path-following algorithm for convex quadratic programs.At each interior-point iteration the algorithm uses a full-Newton step and a suitable proximity measure for tracing approximately the central path.We show that the short-step algorithm has the best known iteration bound,namely O( √ n log (n+1) ).
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملOn Generalized Primal-Dual Interior-Point Methods with Non-uniform Complementarity Perturbations for Quadratic Programming
This technical note discusses convergence conditions of a generalized variant of primal-dual interior point methods. The generalization arises due to the permitted case of having a non-uniform complementarity perturbation vector, which is equivalent to having different barrier parameters for each constraint instead of a global barrier parameter. Widely used prediction-correction methods and rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program. Comput.
دوره 4 شماره
صفحات -
تاریخ انتشار 2012